First Semester B.C.A. Degree Examination, October/November 2019

(CBCS Scheme)

OPERATING SYSTEM

Time: 3 Hours

[Max. Marks: 90

Instructions to Candidates: Answers ALL Sections.

SECTION - A

Answer any TEN questions :

(10 × 1 = 10)

- 1. What is spooling?
- 2. Name the types of semaphore.
- 3. What is system call?
- 4. What is logical address?
- 5. What do you mean by Garbage collection?
- 6. What is threshing? The second and based a subsecond to the second control of the seco
- 7. Define Cache memory.
- 8. What is the degree of multi programming?
- 9. Define FILE.
- 10. Define rotational latency.
- 11. Expand WORM.
- 12. Define access matrix.

SECTION - B

Answer any FIVE questions:

 $(5 \times 3 = 15)$

- 13. Explain the different process state with a help of neat diagram.
- 14. Differentiate between multi tasking and multi programming.
- 15. Mention any three differences between mutex and semaphore.

Q.P. Code - 68132

- 16. Write three disadvantages of using linked file allocation method.
- 17. Differentiate between internal and external fragmentation.
- 18. Explain process synchronization.
- 19. Explain any one security problem in protection and security of a file.

SECTION - C

Answer any SIX questions:

 $(6 \times 5 = 30)$

- 20. Write a note on real time operating system.
- 21. Explain the different types of schedulers.
- 22. Explain PCB with a help of neat diagram.
- 23. Explain dinning philosopher solution using semaphore.
- 24. Explain the task performed by the FILE management in any operating system.
- 25. Explain the various types of VIRUS.
- 26. Explain the necessary conditions for a dead lock to occur.
- 27. Write a note on monitors and critical regions.

SECTION - D

Answer any FIVE questions:

 $(5 \times 7 = 35)$

- 28. Explain the various services provided by an operating system.
- Find the closing time, average turn around time and average waiting time for the following processes using Round Robin method of time quantum = 2.

Process No.	Arrival Time	Burst Time			
Po	0	4			
P_1	1	5			
P ₂	2	2 - 2			
P_3	3	1			
P ₄	4 1 2 10 1	6			
P ₅	6	3			

- 30. (a) Explain Banker's algorithm.
 - (b) Mention three conditions for the solution to critical section problem.

(4 + 3)

- 31. Explain paging with the help of neat diagram.
- 32. For the following snap shot find the total resources available, need matrix, write the sequence and is it a safe state.

Allocation		ion	Process No.	Max		Available			
A	В	C	Processes	Α	В	C	A	В	C
0	1	0	Po	7	5	3	3	3	2
2	0	0	P_1	3	2	2			
3	0	2	P_2	9	0	2			
2	1	1	P ₃	2	2	2			
0	0	2	P ₄	4	3	3			

33. 98, 183, 37, 122, 14, 124, 63, 67

Assuming the head is initially at cylinder 56. Draw and explain using the following disk scanning method.

- (a) FCFS
- (b) SSTF
- (c) SCAN
- 34. For the following string find the ratio of page hit and page fault or page miss using LRU and FCFS method of the page size = 03.

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 1, 2, 0.